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Multiagency effort to address GHG
emission from agriculture
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Research Objectives

Estimate annual baseline N,O emissions in
representative cropping systems

Determine reductions in N,O emissions through lower
N inputs, without yield penalty

Determine N,O emission factors in response to a
range of N fertilizer inputs

Identify key environmental (magnitude of influence)
conditions affecting N,O flux

Provide data for modeling by collaborators




GHG emission overview
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7150 TG CO2 Eq.

7% B Residential
B US Territories
H Electric Power

28%

P

Source: USEPA Inventory of US GHG
Emissions, 2007




US emissions of methane and nitrous oxide

Methane
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Source: USEPA Inventory of US GHG
Emissions, 2007




N,O production and emission from soil

The “Leaky Pipe Theory”
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RICE SYSTEMS CH,

CH, and N,O emissions
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Chambers used for static N,O flux measurements in the field




Annual N,O Emission Measurements

* Year-round N,O flux measurements

* Frequent event-based N,O flux measurements
— after N fertilization
— following irrigation and rainfall events

— incorporation of residue

 Integrate flux measurements to estimate yearly N,O
emissions




Baseline N,O and CH, Emissions
Selected Crops

Acreage Inputs Region
LCETS
Alfalfa 1050,000 0-25 SV
Wheat, oats, barley 730,000 0-90 SV
Rice 526,000 0-200 SV
Lettuce, broccoli, celery 360,000 50-150 Coastal
Tomato 324,000 50-120 SV

Almonds, walnuts 800,000 20-160 SV
Vineyards 790,000 0-50 SV
Cotton 560,000 30-120
Corn 520,000 0-140




INZO emissions, Yield and Fertilizer N in corn

N Fertilizer Rate vs. Yield N Fertilizer Rate vs. N,O Emission
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Rice yields as influenced by over and
under recommendations of fertilizer N
per acre

Grain Yield
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N,O emissions tend to be event based
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ug N20-N m-2 h-1

Interaction of Fertilizer Type & Tillage
on N,O Emissions

Corn crop (May - Nov 2004)

=mmm Conventional tillage
=== Conservation tillage
=mmm No tillage

- anhydrous UAN broadcast

ammonia urea
Venterea et al., 2005
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N,O production and emission from soil

The “Leaky Pipe Theory”
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Water filled pore spacel/irrigation comparison

---x%--- CT=-vwWLCC
— e ST-VWLCC

Jan

100

---x--- CT-WLCC
— .  ST-WLCC

% WFPS

O T T T T T T T T T T @
Jan Mar May July Aug D "

UCDAVIS

A 1E



Irrigation and Cover Crop Effects on
N,O Emissions
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Methane Emissions Rice
Rice Experiment Station, Biggs, CA
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Rice Experiment Station, Biggs, CA

Methane Emissions Rice
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Benefits of N,O Multiagency Monitoring Project

Baseline N,O emissions for 10 types of cropping
systems occupying 5 million acres of CA agricultural
land

N,O emission factors at multiple N fertilizer levels to
estimate potential N,O emission offsets at reduced N
fertilizer levels (Sliding emission factor)

Minimum data set to calibrate and validate models

Use results to evaluate effects of alternative
management practices and future changes in
California’s cropping systems on N,O emissions




Conclusions

« Controls and drivers of N,O emissions are well
known, but the interaction of factors affecting
emission and magnitude of the emissions are
difficult to predict

Optimizing N fertilizer use efficiency is the best
strategy to minimize N,O emissions

— Sounds easy!!

N,O flux measurements in California cropping
systems will provide improved emission
estimates and information on mitigation potential




